李孟函, 王金晶. 生成式人工智能教育应用的法律风险与纾解[J]. 内江师范学院学报, 2025, 40(3): 108-116. DOI: 10.13603/j.cnki.51-1621/z.2025.03.018
    引用本文: 李孟函, 王金晶. 生成式人工智能教育应用的法律风险与纾解[J]. 内江师范学院学报, 2025, 40(3): 108-116. DOI: 10.13603/j.cnki.51-1621/z.2025.03.018
    LI Menghan, WANG Jinjing. The Legal Risks and Solutions of the Application of Generative Artificial Intelligence into Education[J]. Journal of Neijiang Normal University, 2025, 40(3): 108-116. DOI: 10.13603/j.cnki.51-1621/z.2025.03.018
    Citation: LI Menghan, WANG Jinjing. The Legal Risks and Solutions of the Application of Generative Artificial Intelligence into Education[J]. Journal of Neijiang Normal University, 2025, 40(3): 108-116. DOI: 10.13603/j.cnki.51-1621/z.2025.03.018

    生成式人工智能教育应用的法律风险与纾解

    The Legal Risks and Solutions of the Application of Generative Artificial Intelligence into Education

    • 摘要: 生成式人工智能在为教师和学生提供技术性支持的同时优化了传统教育结构。然而,在教育应用中也有潜在的法律风险,包括因数据收集行为和算法黑箱引发的侵犯著作权和个人信息的风险,以及因生成物的版权与归属不明引发的管理混乱等。在法律风险源头治理方面,需通过数字水印、信息脱敏及访问控制等针对性地解决技术漏洞。在法律风险监管和应对方面,需在基本原则的指引下,落实著作权侵权防治规则、个人信息收集和使用规则及算法监督规则。对于符合"独创性"要求的生成物,则应当完成权利归属的场景化判断,以期有效应对教育领域生成式人工智能运作中的法律风险。

       

      Abstract: Generative artificial intelligence (GAI) provides technical support for teachers and students, and the structures of traditional education have been optimized concurrently. However, the application of AGI into education also gives rise to potential legal risks. The risks include infringement risks of copyright and personal information due to data collection and algorithm black boxes, as well as management confusion caused by unclear copyright and ownership of generated content. In terms of source governance of legal risks, targeted solutions, such as digital watermarking, data masking, and access control, are needed to address technical vulnerabilities. In terms of supervision and response of legal risks, it is necessary to, under the guidance of basic principles, implement prevention rules of copyright infringement, rules for personal information collection and usage, and rules for algorithm supervision. For the content by GAI meeting the originality requirement, scenario-based judgments on rights attribution should be made to effectively address legal risks in the operation of GAI in education.

       

    /

    返回文章
    返回