马骞斌, 张存华. 具有恐惧效应和双曲死亡率的捕食者-食饵模型的平衡点稳定性和Hopf分支[J]. 内江师范学院学报, 2024, 39(10): 36-40. DOI: 10.13603/j.cnki.51-1621/z.2024.10.006
    引用本文: 马骞斌, 张存华. 具有恐惧效应和双曲死亡率的捕食者-食饵模型的平衡点稳定性和Hopf分支[J]. 内江师范学院学报, 2024, 39(10): 36-40. DOI: 10.13603/j.cnki.51-1621/z.2024.10.006
    MA Qianbin, ZHANG Cunhua. Equilibrium stability and Hopf bifurcation of a predator-prey models with fear effects and hyperbolic mortality rates[J]. Journal of Neijiang Normal University, 2024, 39(10): 36-40. DOI: 10.13603/j.cnki.51-1621/z.2024.10.006
    Citation: MA Qianbin, ZHANG Cunhua. Equilibrium stability and Hopf bifurcation of a predator-prey models with fear effects and hyperbolic mortality rates[J]. Journal of Neijiang Normal University, 2024, 39(10): 36-40. DOI: 10.13603/j.cnki.51-1621/z.2024.10.006

    具有恐惧效应和双曲死亡率的捕食者-食饵模型的平衡点稳定性和Hopf分支

    Equilibrium stability and Hopf bifurcation of a predator-prey models with fear effects and hyperbolic mortality rates

    • 摘要: 本文考虑了具有恐惧效应和双曲死亡率的捕食者-食饵模型,分析了平衡点的稳定性、正平衡点处Hopf分支的存在性以及Hopf分支的性质.同时,通过Matlab软件对相应的理论结果给予了数值模拟.

       

      Abstract: In this paper, a predator-prey model with fear effect and hyperbolic mortality is considered.The stability of the equilibrium point, the existence of Hopf bifurcations and the properties of Hopf bifurcations are analyzed. Additionally, the corresponding theoretical results are numerically simulated by Matlab software.

       

    /

    返回文章
    返回