一类带有疫苗接种传染病模型的全局稳定性和分岔分析
Global stability and bifurcation analysis for a class of infectious disease models withvaccination
-
摘要: 分析了一类带有疫苗接种的SEIR新型冠状病毒感染模型,讨论系统的边界平衡点和内部平衡点存在的参数条件,通过再生矩阵的方法计算基本再生数,给出了平衡点的局部稳定性,并进一步构造Lyapunov函数和变分矩阵的方法分析系统平衡点的全局渐近稳定性,得到当基本再生数R0<1时,系统存在一个全局渐近稳定的边界平衡点;当基本再生数R0>1时,系统的边界平衡点是不稳定的,同时还存在一个全局渐近稳定的内部平衡点.利用分岔理论中的Sotomayor定理证明了在R0=1处,系统在边界平衡点P0附近将会发生跨临界分岔.最后通过数值模拟展示系统稳定性的情况.Abstract: This paper analyzes a class of SEIR model for novel coronavirus with vaccination and discusses the parameter conditions for the existence of boundary and internal equilibrium of the system. Then, we give the local stability by calculating the basic reproduction number and further investigate the global stability by constructing Lyapunov function and variational matrix. When the basic reproduction number is smaller than 1, the system is local and globally asymptotically stable at the boundary equilibrium point; When the basic regeneration number is bigger than 1, the boundary equilibrium becomes unstable and the internal equilibrium is locally and globally asymptotically stable. Using Sotomayor theorem, it is proved that trans-critical bifurcation occurs the basic regeneration number crosses 1 near the boundary equilibrium. Finally, the stability of the system is demonstrated by numerical simulation, and the epidemic situation guidance suggestions are provided in combination with the actual biological mathematical significance.