甯懿楠, 杨爽, 李云飞. 上市公司信用风险评估指标体系的构建[J]. 内江师范学院学报, 2017, (12): 59-63. DOI: 10.13603/j.cnki.51-1621/z.2017.12.012
    引用本文: 甯懿楠, 杨爽, 李云飞. 上市公司信用风险评估指标体系的构建[J]. 内江师范学院学报, 2017, (12): 59-63. DOI: 10.13603/j.cnki.51-1621/z.2017.12.012
    NING Yinan, YANG Shuang, LI Yunfei. On Construction of Credibility Risk Assessment Indicator System for Listed Companies[J]. Journal of Neijiang Normal University, 2017, (12): 59-63. DOI: 10.13603/j.cnki.51-1621/z.2017.12.012
    Citation: NING Yinan, YANG Shuang, LI Yunfei. On Construction of Credibility Risk Assessment Indicator System for Listed Companies[J]. Journal of Neijiang Normal University, 2017, (12): 59-63. DOI: 10.13603/j.cnki.51-1621/z.2017.12.012

    上市公司信用风险评估指标体系的构建

    On Construction of Credibility Risk Assessment Indicator System for Listed Companies

    • 摘要: 针对上市公司信用风险评估指标体系的构建问题进行了研究,首先按上市公司财务年度报表中的盈利能力、偿还能力、成长能力、营运能力四个准则层选取报表中的所有具体指标,然后对缺失数据进行必要的补齐, 在保证数据齐全的基础上,运用改进的主成分分析法进行主要信息量筛选得到客观筛选的指标,再利用熵权法替换主观性较强的专家打分法确定指标权重,充分利用数据自身的表达性,避免主观因素的影响,最终构建了上市公司信用风险评估指标体系. 最后与具有代表性的主观赋权方法进行了对比分析.

       

      Abstract: Efforts are made to construct the credibility risk indicators system for listed companies. The paper chooses all
      the specific indices in the annual financial statements of listed companies based on4 categories of standard level, namely profit- ability, solvency, development capacity and management ability. Then the missing data are recuperated, and on the basis of the ensured completeness of data, the principal information variables were selected by the improved principal component analy- sis(PCA) and therefore the objective indices are thus obtained, and then the weight of each indicator is decided on by use of entropy weight method rather than expert-grading method which is blamed for its strong subjectivity. By taking full advantage of the self-expression of data and eliminating the influence of subjective factors, the credibility risk evaluation indicators system
      is eventually established and is then given a contrastive analysis against the most representative method of subjective weighting.

       

    /

    返回文章
    返回