胡新海. 一种决策树算法对微博垃圾评论的检测[J]. 内江师范学院学报, 2015, (6): 24-27. DOI: 10.13603/j.cnki.51-1621/z.2015.06.005
    引用本文: 胡新海. 一种决策树算法对微博垃圾评论的检测[J]. 内江师范学院学报, 2015, (6): 24-27. DOI: 10.13603/j.cnki.51-1621/z.2015.06.005
    HU Xin-hai. Detection of MicroBlog Comment Spam by a Decision Tree Algorithm[J]. Journal of Neijiang Normal University, 2015, (6): 24-27. DOI: 10.13603/j.cnki.51-1621/z.2015.06.005
    Citation: HU Xin-hai. Detection of MicroBlog Comment Spam by a Decision Tree Algorithm[J]. Journal of Neijiang Normal University, 2015, (6): 24-27. DOI: 10.13603/j.cnki.51-1621/z.2015.06.005

    一种决策树算法对微博垃圾评论的检测

    Detection of MicroBlog Comment Spam by a Decision Tree Algorithm

    • 摘要: 微博评论信息的具有发表随意、传播迅速,影响广泛等特点,在给用户带来便捷的同时也吸引大量垃圾制造者的目光,微博也成为垃圾评论和不良信息发布的平台,因此,微博评论必须进行有效的检测与过滤.选取J48决策树文本分类的方法对微博垃圾评论在常用词表的基础上,选取微博上关注度较高的评论信息作为实验的训练集,以准确度、召回率和查准率等数据验证所选取方法的可靠性,并以实验数据结果验证了方法的有效性.

       

      Abstract: Microblog review is characterized by its easy publication, rapid dissemination, extensive influence, which brings the users great convenience but also attracts a large number of spammers' attention, making it a spam and bad information release platform. Therefore, the microblog comments must be detected and filtered effectively in advance. By use of the J48 decision tree classification to sort out the commonly used vocabulary in micro-blog spam, and the selection of microblog comment information of wider concern as the experimental training set, the reliability of the method chosen is verified based on the accuracy, recall rate and precision ratio of data, and the effectiveness of the proposed method is proved by the experimental results.

       

    /

    返回文章
    返回