卫静婷, 陈利伟. 半导体载流子迁移率及电阻率的计算模型[J]. 内江师范学院学报, 2016, (10): 43-47. DOI: 10.13603/j.cnki.51-1621/z.2016.10.009
    引用本文: 卫静婷, 陈利伟. 半导体载流子迁移率及电阻率的计算模型[J]. 内江师范学院学报, 2016, (10): 43-47. DOI: 10.13603/j.cnki.51-1621/z.2016.10.009
    WEI Jing-ting, CHEN Li-wei. Calculation Model for Carrier Mobility and Semiconductor Resistivity[J]. Journal of Neijiang Normal University, 2016, (10): 43-47. DOI: 10.13603/j.cnki.51-1621/z.2016.10.009
    Citation: WEI Jing-ting, CHEN Li-wei. Calculation Model for Carrier Mobility and Semiconductor Resistivity[J]. Journal of Neijiang Normal University, 2016, (10): 43-47. DOI: 10.13603/j.cnki.51-1621/z.2016.10.009

    半导体载流子迁移率及电阻率的计算模型

    Calculation Model for Carrier Mobility and Semiconductor Resistivity

    • 摘要: 本文利用计算机求解平衡载流子的电中性条件,获得一般情况下杂质半导体载流子的统计分布.综合考虑了晶格振动散射、杂质散射和载流子散射对载流子迁移率的影响,建立了一套载流子迁移率和电阻率的计算模型.在此基础上,研究了不同的杂质浓度与温度对迁移率和电阻率的影响.模型结果表明,在低温和室温附件,杂质散射是主要散射机制,而在高温区,晶格振动散射是主要机制; 电阻率随着杂质浓度的增大基本呈线性减少,而室温下的电阻率随温度升高而增加,在低温和高温区随温度升高而减少.

       

      Abstract: The carrier distribution from the universal condition of electrical neutrality of semiconductor is acquired by utilizing the computer solving method. Also a model is developed here for the calculation of carrier mobility> which takes into account the ma

       

    /

    返回文章
    返回